The Li Zeng Lab

Research Publications Cell Biology Immunology


Arthritis and Cartilage Regeneration

Arthritis is a widespread debilitating disease in which joint cartilage is degraded. Due to the limited regenerating ability of cartilage, the cartilage tissue is often permanently lost. Understanding the mechanisms of cartilage development and degradation is essential for devising strategies to slow down arthritis and regenerate cartilage. We study novel regulators of cartilage development and maintenance, as well as develop technologies to facilitate these investigations.

Cartilage Development and Regeneration

Cartilage development involves cartilage cell fate determination and the progression of cartilage cells (chondrocytes) from the proliferation phase to the hypertrophic (maturation) phase. Such developmental processes result in a cartilage template for bone formation (i. e. endochondral ossification). In our studies on cell fate determination, we found that a Sonic hedgehog (Shh) concentration gradient elicits patterns of different cell fates within the somites in a morphogen-like manner, with higher levels of Shh promoting the cartilage cell fate, and lower levels of Shh promoting the muscle cell fate. Additionally, interaction of factors such as Nkx3.2 and Pax3 that are induced by Shh and Wnt signaling further demarcates the fields of muscle and cartilage cells (Cairns DM, et al 2008  Abstract in PubMed; Fig. 1). These signaling events are important as the disruption of them may cause diseases with abnormal skeletal structures. In a collaborative study with Drs. Fred Kaplan, Eileen Shore and Robert Pignolo from University of Pennsylvania, we introduced the dominant negative form of a G protein subunit (GNAS), and observed massive ectopic cartilage and bone formation, mimicking the disease condition of heterotopic ossification (Cairns et al, 2012  Abstract in PubMed).

Once the cartilage cell fate is determined, complex chondrocyte differentiation processes allows the enlargement or elongation of the cartilage template. In our studies, we found that the Insulin-like growth factor II (IGF-II) was a critical factor for cartilage and bone development, as the IGF-II knockout mice exhibit abnormal timing of chondrocyte hypertrophy as well as reduced perichondrial growth and differentiation. As a result, the IGF-II knockout mice have shorter bones, resembling growth arrest in humans due to IGF-II mutations.

Zeng Fig 1

Figure 1.Shh and Wnt signaling specify cartilage and muscle cell fate determination in the somite.

Zeng Fig 2 

Figure 2. Ectopic expression of dominant-negative GNAS leads to ectopic cartilage formation.

Arthritis and Inflammation

While most of the cartilage during development is replaced by bone, cartilage remains in certain locations in adult, including the articular surfaces of the bone and the intervertebral discs. Arthritis is characterized by the destruction of joint cartilage as well as pathological changes in other joint tissues. Inflammation plays a critical role in the initiation and exacerbation of joint degeneration. The most common form of arthritis is osteoarthritis (OA). We have been studying regulators of OA development using mouse OA models (including the destabilization of the medial meniscus (DMM) and the monosodium iodoacetate models), as well as using human OA cartilage specimens. In one study, we found that IGF-II inhibits pro-inflammatory cytokine-induced matrix loss in chondrocytes, and intrarticular injection of lentiviral IGF-II could halt OA progression (Uchimura et al, 2015  Abstract in PubMed; Fig. 3). We are also exploring enabling technologies to facilitate our study. A common technological barrier for OA investigation is the lack of methods that allow for tracking of joint destruction over the course of joint degeneration, as opposed to single time point analysis, which slows down the pace of drug discovery. One technology is near infrared fluorescence (NIRF) imaging. Specifically, we have used a synthetic substrate of various MMPs (including MMP1, 13 and 9), which emits near infrared fluorescence when cleaved, therefore allowing us to follow MMP activities in vivo (Leahy et al, 2015 Abstract in PubMed). Our study showed that this probe exhibited progressively increased fluorescence in experimental mouse OA knees as compared to the sham, reflecting the trajectory of joint degeneration over time in the OA (Fig. 4).

Zeng Fig 3

Figure 3. IGF-II promotes joint cartilage integrity in mouse experimental osteoarthritis. Shown here are sagittal sections of the knee joint, where femur (F), tibia (T) and meniscus (M) are indicated

Zeng Fig 4

Fig. 4. Near Infrared Fluorescence (NIRF) imaging using an MMP activitable probe. Continued increase in NIRF signals were observed during mouse OA development.

Cartilage Regeneration

We are developing novel strategies to integrate concepts and approaches from developmental biology studies with tissue engineering, in order to engineer stronger and more stable cartilage tissue for repair. In collaboration with Dr. David Kaplan from the Department of Biomedical Engineering, our laboratory discovered that muscle cell-expressing factors have the capacity to promote matrix production in engineered cartilage of three-dimensional cultures and resist pro-inflammatory cytokine-induced matrix loss (Rainbow et al, 2013  Abstract in PubMed ). We also examined the impact of different scaffolds on the stability of engineered cartilage under inflammatory conditions. In particular, we discovered that scaffolding materials and structure influence the behavior of chondrocytes by influencing the microenvironment, and should be considered as an important component for bioengineering stable cartilage tissues (Fig. 5) (Kwon et al, 2013  Abstract in PubMed).

Zeng Fig 5

Fig. 5. Muscle cells-secreted factors promote cartilage matrix expression under inflammatory conditions in chondrocytes cultured in 3D silk scaffolds.

Apply to the Sackler School


The priority application deadlines are as follows:

December 1: Basic Science Division PhD Programs

February 15: Building Diversity in Biomedical Sciences

March 31: Post-Baccalaureate Research Program

May 1: Clinical & Translational Science, MS in Pharmacology & Drug Development

June 15: Online Certificate in Fundamentals of Clinical Care Research